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INTRODUCTION

This is the sixth quarterly status report on a program to implement

higher level image processing algorithms, being conducted by the Westinghouse

Systems Development Division for the Computer Science Center, University of

Maryland. Suport for the proqram is provided by the Defense Advanced Re-

search Projects Agency (DARPA) under contract DAAG53-76-C-0138 with the U.S.

Army Mobility Equipment Research and Development Command.

The report was prepared by Arden Helland of Westinghouse, with con-

tributions by Shmuel Peleg and Azriel Rosenfeld of the University of Maryland.

The Westinghouse Program Manager is Dr. Glenn Tisdale. The work was discussed

at monthly meetings, held at the University of Maryland (UMO) with Professor

Azriel Rosenfeld of UMD and Dr. George Jones of NVEOL.

This report covers results of special analysis performed as part of

the recent work to support the UMD in the statistical testing of complex

algorithms. The planned steps in this support program are:

Selection of processing algorithms for evaluation.

Analysis and adaptation of algorithms for execution

on the Programmable Array Processor (PAP).

Evaluation of algorithms on a PDP-VAX GP computer.

Throughput analysis; PAP vs. VAX.

Processing of a set of imagery.

Results are reported at regular intervals as appropriate.

This report analyzes the segmentation properties of gray level re-

laxation applied to the two-label case. The results produce threshold,

speed and stability criteria to facilitate subsequent processing. Most of

these results are experimentally verified in a report by Azriel Rosenfeld

and Russel C. Smith. Evaluation and verification is in



progress at Westinghouse using comparable imagery and test patterns. The

current status of the computer program modeling and test results will be

covered in a separate report to be completed shortly. Efforts underway and

planned for the immediate future include evaluation of image samples on the

VAX, throughput analysis for the PAP, and relaxation processing for multiple

label cases. The analysis and subsequent testing is intended to apply to

monochrome TV or FLIR imagery (hence, one-dimensional data) and usually

only one object polarity (two labels) with extension to both object

polarities in the same Imagery (three labels).
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ABSTRACT

'This report analyzes the segmentation properties of the Peleg

relaxation scheme; for thl one-dimensional, two-label case.

It is shown that if the probability of either label is identically zero,

then that label probability will remain identically zero for all iterations.

However, if the label probabilities are non-zero, then the label probability

at each iteration will either increase toward unity or decrease toward zero,

depending on whether the average probability of the neighborhood is above

or below a threshold determined by the relationship of the compatibility

coefficients. Further analysis of the boundaries between regions of

different labels shows that boundary stability requires that the net

effective coefficients for both labels be equal. In addition, it is shown

that the speed at which ambiguity is resolved is maximized if non-zero

compatibility coefficients are allowed for alike labels. There has been

no indication that increased speed alters the results. Extensions to

multiple-label cases are discussed. iq
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1. Relaxation

Relaxation labeling has been shown to provide reduced error rates in

pixel classification compared to procedures that are based solely on local

evidence. Relaxation classification uses initial label probabilities,

which may be modified based on the label probabilities in the neighborhood

(region) of each decision point (pixel). The objective for the cases

of interest is to segment darker regions from lighter regions in the presence

of significant noise which causes ambiguity within the regions. It has

been shown by several examples that for light/dark labels,

darker regions tend to become black, and lighter regions become white as the

relaxation iterations progress. However, for the cases cited, the progress

toward unambiguous labels is rather slow, the boundaries between the regions

do not appear to be stationary, and changing the coefficients alters the results.

The process appears to have the intriguing capability of making a very faint

target in selected windows appear obvious after a few iterations. It therefore

appears that relaxation simultaneously provides the advantages of classification

by regional (vs local) evidence as well as the contrast of segmentation

(but without selecting a threshold). It has been recognized that in many

cases relaxation results appear to degrade after several iterations. Also,

the computational complexity of relaxation constrains the number of

iterations to the minimum number practical. Therefore, best efficiency

is obtained if the desired results are obtained with a minimum number of

iterations. Eventual convergence to an undesirable limit, however, may not

be a serious disadvantage in practical applications.
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II. Compatibility Coefficients

The compatibility coefficients used in relaxation may be derived in

several ways. Peleg proposed that they be derived by the

relationship of joint to individual probabilities. These may be derived

from a statistical model for the problem domain, or may be estimated

from a statistical estimated using representative imagery. Some of the

most intriguing relaxation results have been shown with the coefficients

derived solely from the sample window to be processed; in most of these cases

the sample windows were manually selected to include a known object.

It has been stated that for many cases of light/dark relaxation,

light reinforces light and dark reinforces dark. This

implies that the coefficients should be zero for all relationships except

for light/light and dark/dark. If a light/dark or a dark/light coefficient

is non-zero, this implies that dark also reinforces light (and light also

reinforces dark). This will tend to reduce the effect of the surrounding

region, so that each point is chanqed l ess than if onl y the al ike l abel s are

allowed to interact at each iteration. If, however, the unlike coefficients

were allowed to become greater than those for the alike labels,
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the result should be a tendency for points to be assigned labels opposite

to the surrounding region.

The form of the coefficients suggested by Peleg is:

P Prij (a,a) = P (a ,0(B

P(a) P(B)

Now, the joint probability P(a,B) can be expressed as a function of

the conditional probability as follows:

P(coB) = P(a) P(B/a)

so that P(a) P(/a) P(aI)

P(a) PB = P O

Now, to consider what values may be represented by the above. First,

consider an idealized case; if all alike labels are highly clustered

then P (a/a) - 1 and correspondingly, P (B/a)- 0 for B t a. Also,

P (B) = P (a) +.5 if both label classes are equally likely

(or equally represented in a statistical sample). Therefore,

it may be deduced that rij (a,a) and rij (S,B) both approach a value of

2.0 for such an idealized case. This implies that ideal coefficients should

be equal for alike labels. If region boundaries are considered,

P (B/Wa) and P (a/B) would be small and approximately equal because each

boundary is counted twice - once as a , 3 and again as B - a. Therefore,

ideal coefficients should have very low values if reinforcement of boundaries

is not intended.

Second, consider what happens in the idealized case when cand

B labels are not equally represented. If we consider sample frames dominated

by class B,then as P(O) -,., the idealized value of rij (B,B) is reduced from

2.0 toward I, but the corresponding result is that as P(a) O, the rij (a,a)

increases without limit. This will provide much greater reinformcement for

the scarce label than for the more common label.
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Third, consider the effects of random noise added to a sample frame

which contains clustered regions. As the noise becomes more significant,

the alike labels within the regions become less correlated, so that

P(cL/a) and P(r/fi) are reduced from 1.0 toward 0.5. Correspondingly,

for the unlike labels, P(,/a) and P(c/a) increase from 0 toward

0.5. Therefore, we may deduce that noise which causes ambiguity in a

sample used for deriving coefficients will, in turn, cause ambiguity in the

relationship of the compatibility coefficients. If these coefficients

are, in turn, used to process a noisy image, the ambiguity will have a

tendency to be preserved longer than if lower unlike coefficients

were used. However, if the random noise does not affect the proportional

representation of the two labels, the relative effect of an unequal

representation is unchanged.

III. Threshold Analysis

The following analysis is based on the probability updating rule

developed by Peleg for two labels. The two labels will be calledb

and w, so that Pib is the probability that the ith pixel is black. Likewise,

P. is the probability that the jth neighbor is black. In

the general case, the compatibility coefficients are a function of the

orientation of the jth neighbor to the ith pixel, as well as their labels.

This report makes the assumption that the compatibility coefficients

are independent of (or averaged over) the orientation, so that it is a function

only of the labels, as follows:

Assumption: rij (a,W - rc4

For labels b (black) and w (white), therefore, we have rbb, rbw, rwVj, and rwb.

rbb and rww are called the alike label coefficients; rbw and rwb are the unlike

label coefficients.

The updating rule consists of the following parts where K is the

iteration index and N is the number of neighbors:
-5-

_ _____.



K K N K K ~L K
S b *Pib :-Pjb-rbb + Pib Pjw -rbw

j=l

K K N K K N K
Sw Piwl Pjw-rww + Piw g Pjbrwb

j =1

These are used to generate probabilities for the next iteration as follows:

K+l K K+1 K

pbK SbK and Piw Sw

Sb+Sw K K
Sb + Sw

Sb Kand Sw Kmay be reduced to two variables by making the following su'~stitution:

N Kj(
j=l

Pw = 1 - Pb

Also, for simplicity, the iteration index, K , will be dropped; where K+l
occurs it will be indicated by **Therefore, by
multiplying by the number of neighbors N and combining terms, we have

Sb = Pi b(PI rbb-rbw) + r bw) - Pi b -F b
Sw = (l-Pib)((l-Pb)(rww-rwb) + rwb)

-(1.-Pib) ( Pb (rwb-rww) + rww) =(I -Pib) Fw
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Now the change in the black probability of the ith pixel for each

iteration is defined as follows:

Sb Sb-Pib(Sb+Sw)
Sb + Sw Pib Sb + Sw

- Pib - Fb - Pib (Pib Fb + (l-Pib)Fw)

Pib.Fb + (1-Pib) Fw

- Pib (Fb-Fw)(1-Pib)

Pib'Fb + (l-Pib)Fw

It may be noted that if the denominator is positive, then the behavior

of APib is determined by the numerator. The denominator must be non-zero

for all normal cases; the only condition that would permit both Sb and Sw

to be zero is if Pib and Pb have absolutely certain but opposite

labels.

-7-



Now, the product of the two factors involving Pib is:

Pib (1-Pib)

This Is a quadratic function that is zero for both Pib = 0 and Pib = I;

this causes Sb or Sw to be zero, respectively for these two conditions.

The product is positive for all values within probability space 0<Pib<l,

with a maximum value occurring at Pib = .5. Therefore, the behavior of

Apib depends on the Fb - Fw term as follows:

Fb - Fw 0 =PAPib 0

Now, we may solve for Fb - Fw > 0 as a function of Pb and the compatibility

coefficients as follows:

Fb - Fw > 0

Pb (rbb-rbw) + rbw - Pb (rwb-rww) -rw > 0

Pb (rbb-rbw+rww-rwb) > rww - rbw

pb > rww - rbw
-Tb

rww-rbw + rbb-rwb

Therefore, if the average black probability of the neighborhood (Pb)

is above the threshold Tb, the black probability of the ith center pixel

will be increased, regardless of its prior value if non-zero. If Pb

is identically equal to Tb, Pib is unchanged. Conversely, if Pb is below

Tb, Pib is decreased. Therefore, Tb represents a point of divergence,

or conditional stability; any perturbation that moves the neighborhood

probability away from the threshold will change Pib in the same direction.
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The above function of Pb is, of course, a linear increasing function.

If plotted, it crosses the 0 axis at Tb and reaches its maximum

negative and positive values at the constraint limits defined by:

0 < Pb < 1. Various values of Tb would define a family of lines with unity

slope, intersecting the 0 axis at Tb.

We may, therefore, make the following conclusions regarding the

response of APib to Pib and Pb.

1. For lighter~regions: ,
Pib<l and Pb<Tb - Pib<Pib

2. For darker regions: ,

Pib>0 and Pb>Tb --> Pib>Pib
. I*

3. If Db <Tb for all iterations, Pib -1
4. If Pb >Tb for all iterations, Pib +1

Therefore, Pib = 0 and Pib = I are values toward which all pixels within

consistent regions will converge. Although Pb may change from one

iteration to the next, it is unlikely to chanqe its relationship to the

threshold (except if it is very near the threshold or if the initial

label probabilities are inconsistent).

A sketch of P (l-P) and a few cases of P - T is shown below:

/ f-.3

/P- 5

//

". /

/ 7

-9-



IV Speed Analysis

Inspection of the expressions for Sb, Sw and the subsequent definition

for APib show that the unlike coefficients rbw and rwb appear

to have a tendency to partially counteract the relaxation process.

Therefore, it is of interest to determine how APib varies as a function

of the compatability coefficients. As derived previously,

Pib (1-Pib) (Fb - Fw)APib = Pib.Fb + (l-Pib)Fw

Now, Pib defines the difference between the current pr ility of

blackand the absolute white probability; likewise l-Pib = Piw defines

the difference from the absolute black probability. Therefore, it is

convenient to define relative speed as the ratio of the change in

probability to the remaining differences from the appropriate absolute

label. Thus, the relative speed of convergence to the black label is

Cb = APib/(l-Pib). Since -APiw= APib, the relative speed of convergence

to the white label is likewise defined as Cw = -APib/Pib.

Therefore, Cb- APib . Pib (Fb - Fw)
l-Pib Pib.Fb + (l-Pib)Fw

It can be shown that Cb is maximum with respect to Plb as it approaches

the constraint limit of unity. Likewise, Cb is maximum with respect to

Pb when it also approaches the constraint limit of unity. Therefore,

if Cb is evaluated at Pib = Pb = 1:

Cb Fb-Fw (rbb-rbw)+rbw-rww-(rwb-rww)
Fb rbb - rbw + rbw

Cb = rbb - rwb
rbb
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Likewise, Cw is evaluated at Pib = Pb = 0:

-APib Fw-Fb _ rww-rbw
Cw -Pib Fw rWW

These expressions for maximum speed of convergence show that non-zero

unlike coefficients directly reduce speed. It is also of

interest to evaluate the speed for the case where the probability

label for the ith (center) pixel is not equal to the average of the neighbors.

For example, if Pib = .5, (a typical ambiguous level) and Pb = 1, then

CB( 5) Fb - FwCB(5) b + Fw

Cb(.5) = (rbb-rbwl+rbw-rww-(rwb-rww) rbb - rwb

=rbb-rbw'+rbw+rww+(rwb-rww) rbb + rwb

It may be noted that this value is similar to the Pib = 1.0 case except

for areduction due to the addition of the unlike term in the denominator.

This indicates that the resulting probability for the ith pixel is strongly

determined by its neighborhood if the neighborhood label is nearly certain.

Further,if the unlike coefficients are zero and the neighborhood label is

certain then Cb = 1.0. This means that the ith pixel label will be

driven to the same certain label in one iteration, independent of its

previous probability (if non-zero, of course).

This result can be considered as a limiting condition that has

equivalence to post-processing. If the center pixel is at least somewhat

ambiguous (non-zero probability) then it will be made to agree with its

neighbors if all of them are in agreement and have essentially certain labels.

However, the effect on the center pixel will be reduced if not all of the
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neighbors agree because the average of the neighbors is used to modify

the center pixel. This suggests that there is a similarity between

majority-voted post-processing and the unity alike coefficient case of

relaxation, as follows: If at least a majority of the neighborhood has

essentially certain labeling, then the neighborhood average will be

above the threshold of one-half, and the center pixel probability will

be increased. If the region surrounding that neighborhood also has

a majority with the same label, then the neighborhood average will remain

above the threshold for further relaxation iterations, so the center

pixel probability will continue to increase. This applies to any pixel

surrounded by a majority of neighbors with a specific label . Therefore,

any region containing a majority of a specific label will converge to

uniform labelinq. Therefore, this case of relaxation may be considered

a probability weighted and majority-weighted region smoothing process.

The major difference provided by relaxation is that if the probabilities

are unambiguous or the neighborhood lihbels evenly divided, the result

remnains ambiguous until further iteration provide information from a

larger surrounding region to tip the balance toward one of the labels.

The above consideration, of course, required avoidance of the case

of the center pixel probability identical to zero because this prevents

any change in probability. It is of interest to consider the characteristics

of the apparent contradiction between zero probabilities remaining zero

and probabilities changed to agree with the neighbors if their labels are

absolutely certain. First, it should be realized that this case is not

possible in real-world imagery because it implies absolute certainty

-12-



regarding opposite states for adjacent pixels. This requires

infinite frequency bandwidth, zero noise (from all sources including

thermal and quantum physics effects) and no measurement uncertainty. Second,

if we substitute these conditions into the original updating function, we find

that the new probabilities and APi are undefined because the denominator

is zero (for the case of the function for black probabilities, both Pib

and Fw in zero). Third, it seems obvious that if opposite local labels

are not allowed as initial conditions, then they cannot occur as a result

of smoothing or any intermediate relaxation iterations because these processes

tend to reduce local variance. For example, for the unity alike coefficient

case, if the center pixel probability is one-half, it will be set equal to

the neighborhood average in one iteration.

Because the previous threshold and speed analysis is not valid for

the case of opposite local labels, it is convenient to consider the original

updating formula for the unity alike coefficient case; Fb is simply Pb;

likewise Fw is Pw. Now, if we consider the more general case of "opposite"

labels by assuming that Pb = 1-Pib, we can exclude the absolutely certain cases of

Pb=O and Pib=O. If we substitute 1-Pib for Pb and, correspondingly, Pib for

1-Pb, then Sb = Pib(1-Pib) and Sw=(1-Pib) Pib. Because Sb = Sw, the new

center pixel probability will be one-half, regardless of how certain the "opposite"

labels were. This result leads to the following conclusions:

1. Means should be provided to avoid absolute zero probabilities at

least on input data, if relaxation is to be allowed to operate

for all conditions.

2. The use of a minimum non-zero value should have no significant

effect on results because the above analysis indicated performance

essentially independent of absolute value as opposite label

-13- I.



probabilities approach certainty; previous analysis showed rapid

convergence for consistent label probabilities in a region.

3. The relaxation response to conflicting labels between

a center pixel and its neighborhood may be stated more generally

in terms of relative label certainty as follows: If the

neighborhood label is at least as certain as the center pixel

is for the other label, then the center pixel probability for the

neighborhood label will be increased to at least one-half.

As the neighborhood certainty increases relative to the center

pixel, the center pixel probability will approach certainty.

The form of the expressions for speed of convergence 
and threshold

may be simplified somewhat if we make the following assumptions 
to define

new variables:

rwb rbw 2 rx

rbb- rx 2 Rb

rww- rx 2 Rw

then Cb = Rb/rbb

Cw = Rw/rww

Rw =_ 1
Tb Rw+Rb I+Rb/Rw

= Rb 1

Rb+Rw l+Rw/Rb

The thresholds, of course, are not independent functions because

Tb+Tw = 1. The above functions define speed of convergence end threshold

for relaxation as a function of the selected con.patability coefficients.

As shown above, the threshold is determined by the ratio of the net

coefficients Rb and Rw. For the case of equal net coefficients, the

threshold is 1/2. For an unequal example, if the net black coefficient

is twice that for white, the black threshold is only 1/3.

-14-



The speed of convergence, however, is directly determined by the

ratio of the net coefficient to the alike coefficient. The spoed of

convergence toward each label may be different; convergence to the label

with the highest net coefficient will tend to be faster than the others.

The speed of convergence to either label is reduced as the unlike

coefficients become larger compared to the alike coefficient. For example,

if the unlike coefficient is one-half of the alike coefficient,

the speed of convergence measure is 50%. If the unlike coefficient

is 901 of the alike coefficient, then the net coefficient is only 10% of

the alike coefficient, for a speed of convergence measure of 10%. It is

obvious that the maximum speed of convergence to both labels is ro'tained

if all unlike coefficients are set to zero.
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V. Stability Considerations

The dynamic results of iterations of the relaxation process can be

inferred by consideration of the preceding -inalysis. As previously

noted, permitting non-zero unlike coefficients has a significant

effect on the speed of convergence to either label. However, there is

also little change when the neighborhood probability is near the threshold.

This represents a conditionally stable situation; what relaxation performs

is interaction between each pixel and its neighbors, then their neighbors,

etc. The probabilities are adjusted wherever and whenever the neighborhood

is different from the threshold. Usually, there will be some neighboring

condition that will tend to unbalance the probabilities away from the

threshold in one direction, causing the entire neighborhood to converge

to the label determined by the dominating conditions. Assuming

that there are significant regions with each label, then there will be

areas that form boundai ies between these regions. It appears rather

obvious that a neighborhood centered on a linear boundary between two

regions that have converged to probabilities of essentially zero and one

will have an average probability, P. of 0.5. However, if the threshold

is also 0.5, the probability of the center pixel will be unchanged,

thereby preserving the balance between black and white at the

boundary. Therefore, a threshold of 0.5 is called a stable threshold.

Conversely, though, if the threshold is not 0.5, then the probabilities

in the boundary region will be driven toward one of the labels, forming a

new boundary. Therefore, the boundary will continue to move toward the

region whose label has the higher threshold. Provided that no probabilities are

allowed to become identically zero, it appears that regions whose label

has the lower threshold will expand without limit. This will gradually
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destroy the shape of the region and if carried to a sufficiently large

number of iterations would fill the entire image frame. Therefore,

thresholds not equal to 0.5 are called unstable because the information

contained in the original image is eventually lost (although convergence

to a known label, determined by the compatibility coefficients is actually

another "stable' result).

If the boundary is convex instead of linear, then the average

probability of the neighborhood will be slightly biased toward

the "outer" region. Therefore, a convex surface (e.g. a "corner")

will tend to be straightened and a relatively small region surrounded

by its opposite label will tend to shrink in size and lose some of its

shape and edge detail after several iterations.



VI RESULTS

Although the format of the Peleg relaxation process is strictly

based on the sum of neighboring probabilities, allowing unlike coefficients

is equivalent to an additive constant. This constant tends to retard

any change in the probability of that center pixel. This definitely suggests

that there is an equivalence between the "Peleg process" and the "Hummel-

Zucker" process, which explicitly includes a constant. This approximate

equivalence was illustrated by Smith, who processed a frame with

several variations of compatibility coefficients.

To develop the equivalence of the Hummel-Zucker process,

consider that its updating formula includes a unity term which is added

to the average of the neighborhood probabilities.
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Therefore, the unity term is equivalent to a I/N term added for each

neighboring pixel. If the Hummel-Zucker coefficients are defined as

ca(() for alike labels and cx for unlike labels, then the updating

formulas are equivalent if ra(x) - rx = ca(i) - cx and rx = I/N + cx.

The equivalent ra(a) and rx (based on N-8) are the following:

ra(u) - .125 + ca(n) and rx = .125 + cx

Because the Hummel-7ucker unlike coefficients are negative, this

reduces the equivalent unlike coefficient, while the alike coefficient is

Increased by the constant. Therefore, this will tend to result i.n faster convergence

than the Peleg process under similar conditions. This is confirmed by computing the

threshold and speed of converqence measures based on the preceeding analysis, and by

observation of Smith's experimental results (UMD TR.795). ThQ followina table shows

the equivalent coefficients, light threshold and speed of convergence to

dark for 5 sets of results for the "dark tank picture" evaluated by Smith.

Also shown are the equivalents for the unity alike coefficient

case, which was previously described by A. Hanson and E. Riseman

(Computer Vision Systems, Academic Press, NY, 1978).

Process Fig. rx rd Rd rl Rl Tl Cd

Hummel -
Zucker 6 .107 .173 .067 .131 .024 .74 .39

Peleg 10 .91 1.27 .36 1.02 .11 .77 .28

(stable
case) 11 .80 1.20 .40 1.20 .40 .50 .33

(faster
case) 12 .20 1.80 1.60 1.80 1.60 .50 .89

(test
case) 13 .85 1.20 .35 1.10 .25 .58 .29

(unity
.aJ ike) -- 0.0 1.00 1.00 1.00 1.00 .50 1.00
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These values for threshold and speed of convergence confirm what is

observable in the published results. As shown, the threshold for the

Hummel-Zucker case is quite similar to that for the Peleg process; the

figures show that about the same object region is extracted. However,

the speed for the Peleg case is noticably slower; iteration 8 appears to

be approximately equivalent to iteration 5 for Hummel-Zucker. Figures

11 and 12 represent two stable cases, with speed the primary difference.

The difference in the results is quite dramatic; the final result in

figure 11 is roughly equivalent to iteration 2 of Figure 12. In comparison

to Figure 6, the effect of the lower light threshold (higher dark threshold)

is clearly shown by the smaller region extracted for the dark object.

Figure 13 represents an intermediate case with a threshold lower than

midway between the Hummel-Zucker case of Figure 6 and the stable case of

Figure 11. However, the speed is nearly as slow as for the original Peleg

case of Figure 10. The final result of Figure 13 indicates results

roughly comparable to iteration 4 or 5 of Figure 6, but with a somewhat

smaller region extracted due to the lower threshold.

The nature of the relaxation processing is visually indicated by

investigation ot the changes in the gray scale histogram during the relaxation

iterations. The thresholds shown in the previous table were given in terms

of the light probability, so the light threshold value is the proportion

of the distance between extremes of the histogram with increasing light

probability from left to right. Because regions to the left of threshold

move towards the left extreme (and vice versa), there should be a movement

away from the threshold region in both directions. However, since movement

is very slow near the threshold, separation away from the threshold is

not obvious for the initial iterations. As the ambiguity is resolved,

a "valley" appears in the threshold region; the histogram approaches the

two limits. However, if label probabilities are not allowed to reach

-20-



identically zero and the thresholds are not equal, then there will be

a continued motion across the threshold. For the tank pictures with a

light threshold above .5, there will be continued motion across the threshold

region from right to left. This means that the larger peak in the

histogram becomes smaller, increasing the height of the peak at the

opposite end. If the process is carried to its limit, all pixels will end

up at the end of the histogram opposite extreme. Since the histograms

for the figures in the Smith report are normalized to the highest value,

this trend is indicated by the increase in height of the left extreme

peak. Figure 6 shows a good example of this trend. If, however, the

thresholds are equal, then there is no motion across the threshold and the

histogram converges to the two extremes. This trend is indicated by Figure

12.
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Concl usions

Boundary stability is related to the relaxation thresholds.

If the threshold for one of the labels is less than for others,

then regions with that label will tend to expand. However, small

regions tend to shrink due to convex boundaries. This appears to

imply that for large regions of interest, most shape detail will be

preserved with (nearly) equal thresholds for each label. However, the

response to small regions of one label may be improved by a moderate

reduction in that threshold. The expansion due to unequal thresholds may

be used to counteract the tendency for small regions to shrink.

The analysis of speed showed that the change in probability of the

center pixel is reduced by the proportion of the unlike coefficient to the

alike coefficient for each label. Maximum speed is obtained when unlike

coefficients are zero. Also, it is shown that if the probability for the

center pixel is zero for either label, then that probability cannot change

as a result of further relaxation iterations. Therefore, input data

should avoid zero probability to permit full operation of the relaxation

functions.

When the average probability of the neighborhood is equal to (or nearly

equal to) the threshold, then the probability of the center pixel is unchanged

(or changed only slightly). If gray levels near the probability threshold

are considered as. ambiguous levels, then little change occurs

until the ambiguity becomesresolved by further iterations. In other words,

the segmentation process inherent in relaxation proceeds very cautiously

as long as the neighborhood labeling remains ambiguous, deferring conmmitment to

any label until information from more distant regions resolves the ambiguity.

However, if the neighborhood labeling is not near the probability threshold,

then the label probabilities are driven toward zero and unity at a rate
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that is maximized if the unlike coefficients are zero.

The relative adjustment increases as the neighborhood approaches

absolute label probabilities; this allows the process to converge rapidly

when proper compatibility coefficients are chosen. Because the probability

adjustment is based primarily on the average neighborhood probability,

it is a smoothed parameter that should result in a much lower error rate

than ordinary segmentation, even with prefiltering.

if we consider the smoothed neighborhood probability used for the threshold

criterion, the slow adjustment near ambiguous labels and the rapid convergence

to absolute labels, the following description of relaxation processing may

be appropriate:

"A smoothing, cautious, rapidly converging segmentation labeling process"

Because relaxation is a segmentation process with a specific threshold,

selection of the threshold relative to the proper gray level remains essential

to obtaining the desired results. The previous analysis strongly indicates

that stable operation with fast convergence requires that the matrix of

compatibility coefficients be essentially an identity matrix so that thresholds

are equal for both classes. This suggests that the gray scale data should

[ be shifted by additive and/or multiplicative factors so that the desired

gray level results in a probability at the threshold. One such a method

was suggested by Smith; another might be to select constants

such as M and B so that M + B*Zi = T where Zi = selected gray threshold.

There is no apparent need to normalize the probabilities so that

the lowest value occuring in each image frame will have probability

zero and the highest value will have probability unity. The only apparent

requirement is that the lowest possible value for any label should result

in a positive probability. The gain and convergence properties of relaxation

assure that the probabilities resulting from relaxation iterations will

approach zero and unity, except possibly those regions near the probability

threshold.
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Although the initial normalization and coefficient selection

(as analyzed by Danker and Smith) show intriguing results for a few frames

this seems to be due primarily to the fact that all frames contained

both light and dark classes. Therefore, that process cannot be expected to

avoid false alarms if both classes are not effectively represented in a

frame used to develop the normalization and compatibility coefficients.

Any process which selects a new threshold from each frame to be processed

seems certain to extract "something" from nearly every frame. Although

selecting thresholds inversely proportional to likelihood of occurence may

seem to provide a degree of "fairness" (the lesser becomes greater), it

will cause high false alarms on ambiguous data. Furthermore, processing

with unequal coefficients can be expected to have high false alarm rates

if the background contains any regions above the selected thresholds, because

they will expand. Of course, any process based on gray level segmentation

can be expected to have high false alarms if the image contains significant

regions with size and gray levels undistinguishable from the desired classes

of objects.

Although this report is based on the two label case for simplicity,

extension to multiple labels seems to be relatively straightforward.

Particularly when the labels represent relatively independent states defined

in one dimension, there seems to be no significant justification for allowing

compatibility coefficients for unlike labels. Stable boundaries, greatest

effect per iteration and computational simplicity all require that approximately

equal coefficients should be used for alike labels and interation between

independent labels need not be considered. This is equivalent to stating

that the compatibility coefficients among the labels should be approximately

an identity matrix. Normalization across all labels provides the gain

to produce convergence to absolute labels and assures that values remain

defined within probability space. The input data (gray level in this case)
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will have to be appropriately scaled before transformation to

probabilities for each state so that the desired input levels will

correspond to the thresholds between regions.

-25-




